skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mendoza-Cortes, Jose L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. Na-ion batteries (NIBs) are proposed as a promising candidate for beyond Li-ion chemistries, however, a key challenge associated with NIBs is the inability to achieve intercalation in graphite anodes. This phenomenon has been investigated and is believed to arise due to the thermodynamic instability of Na-intercalated graphite. We have recently demonstrated theoretical calculations showing it is possible to achieve thermodynamically stable Na-intercalated graphene structures with a fluorine surface modifier. Here, we present experimental evidence that Na + intercalation is indeed possible in fluorinated few-layer graphene (F-FLG) structures using cyclic voltammetry (CV), ion-sensitive scanning electrochemical microscopy (SECM) and in situ Raman spectroscopy. SECM and Raman spectroscopy confirmed Na + intercalation in F-FLG, while CV measurements allowed us to quantify Na-intercalated F-FLG stoichiometries around NaC 14–18 . These stoichiometries are higher than the previously reported values of NaC 186 in graphite. Our experiments revealed that reversible Na + ion intercalation also requires a pre-formed Li-based SEI in addition to the surface fluorination, thereby highlighting the critical role of SEI in controlling ion-transfer kinetics in alkali-ion batteries. In summary, our findings highlight the use of surface modification and careful study of electrode-electrolyte interfaces and interphases as an enabling strategy for NIBs. 
    more » « less
  3. null (Ed.)
    Alkali ion intercalation is fundamental to battery technologies for a wide spectrum of potential applications that permeate our modern lifestyle, including portable electronics, electric vehicles, and the electric grid. In spite of its importance, the Nernstian nature of the charge transfer process describing lithiation of carbon has not been described previously. Here we use the ultrathin few-layer graphene (FLG) with micron-sized grains as a powerful platform for exploring intercalation and co-intercalation mechanisms of alkali ions with high versatility. Using voltammetric and chronoamperometric methods and bolstered by density functional theory (DFT) calculations, we show the kinetically facile co-intercalation of Li + and K + within an ultrathin FLG electrode. While changes in the solution concentration of Li + lead to a displacement of the staging voltammetric signature with characteristic slopes ca. 54–58 mV per decade, modification of the K + /Li + ratio in the electrolyte leads to distinct shifts in the voltammetric peaks for (de)intercalation, with a changing slope as low as ca. 30 mV per decade. Bulk ion diffusion coefficients in the carbon host, as measured using the potentiometric intermittent titration technique (PITT) were similarly sensitive to solution composition. DFT results showed that co-intercalation of Li + and K + within the same layer in FLG can form thermodynamically favorable systems. Calculated binding energies for co-intercalation systems increased with respect to the area of Li + -only domains and decreased with respect to the concentration of –K–Li– phases. While previous studies of co-intercalation on a graphitic anode typically focus on co-intercalation of solvents and one particular alkali ion, this is to the best of our knowledge the first study elucidating the intercalation behavior of two monovalent alkali ions. This study establishes ultrathin graphitic electrodes as an enabling electroanalytical platform to uncover thermodynamic and kinetic processes of ion intercalation with high versatility. 
    more » « less
  4. Abstract This investigation presents a generally applicable framework for parameterizing interatomic potentials to accurately capture large deformation pathways. It incorporates a multi-objective genetic algorithm, training and screening property sets, and correlation and principal component analyses. The framework enables iterative definition of properties in the training and screening sets, guided by correlation relationships between properties, aiming to achieve optimal parametrizations for properties of interest. Specifically, the performance of increasingly complex potentials, Buckingham, Stillinger-Weber, Tersoff, and modified reactive empirical bond-order potentials are compared. Using MoSe2as a case study, we demonstrate good reproducibility of training/screening properties and superior transferability. For MoSe2, the best performance is achieved using the Tersoff potential, which is ascribed to its apparent higher flexibility embedded in its functional form. These results should facilitate the selection and parametrization of interatomic potentials for exploring mechanical and phononic properties of a large library of two-dimensional and bulk materials. 
    more » « less
  5. null (Ed.)
  6. Black phosphorus (b-P) is an allotrope of phosphorus whose properties have attracted great attention. In contrast to other 2D compounds, or pristine b-P, the properties of b-P alloys have yet to be explored. In this report, we present a detailed study on the Raman spectra and on the temperature dependence of the electrical transport properties of As-doped black phosphorus (b-AsP) for an As fraction x = 0.25. The observed complex Raman spectra were interpreted with the support of Density Functional Theory (DFT) calculations since each original mode splits in three due to P-P, P-As, and As-As bonds. Field-effect transistors (FET) fabricated from few-layered b-AsP exfoliated onto Si/SiO 2 substrates exhibit hole-doped like conduction with a room temperature ON/OFF current ratio of ~10 3 and an intrinsic field-effect mobility approaching ~300 cm 2 /Vs at 300 K which increases up to 600 cm 2 /Vs at 100 K when measured via a 4-terminal method. Remarkably, these values are comparable to, or higher, than those initially reported for pristine b-P, indicating that this level of As doping is not detrimental to its transport properties. The ON to OFF current ratio is observed to increase up to 10 5 at 4 K. At high gate voltages b-AsP displays metallic behavior with the resistivity decreasing with decreasing temperature and saturating below T ∼ 100 K, indicating a gate-induced insulator to metal transition. Similarly to pristine b-P, its transport properties reveal a high anisotropy between armchair (AC) and zig-zag (ZZ) directions. Electronic band structure computed through periodic dispersion-corrected hybrid Density Functional Theory (DFT) indicate close proximity between the Fermi level and the top of the valence band(s) thus explaining its hole doped character. Our study shows that b-AsP has potential for optoelectronics applications that benefit from its anisotropic character and the ability to tune its band gap as a function of the number of layers and As content. 
    more » « less